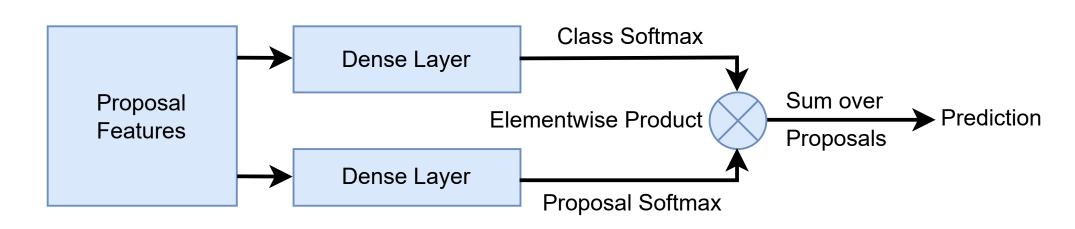
Scaling Novel Object Detection with Weakly Supervised Detection Transformers

Tyler LaBonte^{1,3}, Yale Song², Xin Wang¹, Vibhav Vineet¹, Neel Joshi¹ ¹Microsoft Research, ²Meta AI/FAIR, ³Georgia Tech

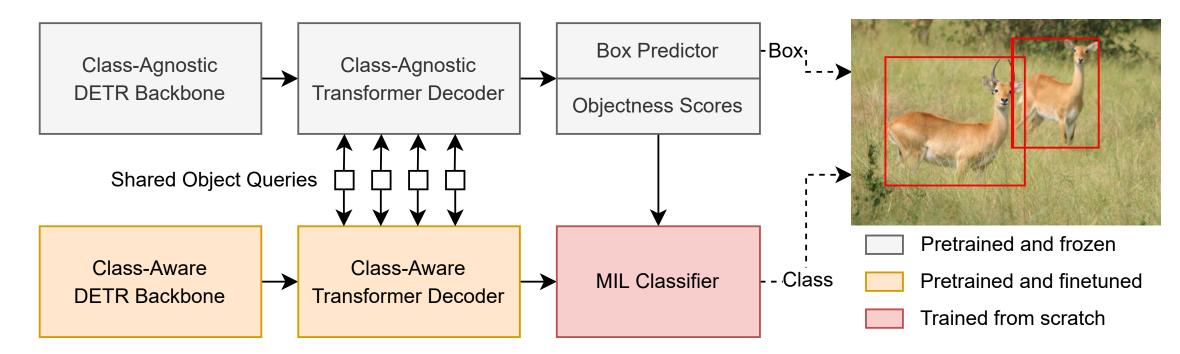

Effortless Detection of Novel Objects

- Object detection annotation can be difficult
- Weakly supervised object detection (WSOD) uses only image-level class labels
 - Pretrain on annotated source dataset and transfer to target dataset of novel objects with class labels
- Goal: effortless detection of novel objects without expensive labeling

Previous Work

- WSOD paradigm is *multiple instance learning* (MIL)
 - Aggregates class features over dataset to localize objects
 - 2016: Bilen and Vedaldi introduced deep learning framework for MIL [1]
- Current approaches are not scalable
 - Require multiple rounds of training and refinement [3, 5, 8]
 - Utilize small sets of 60 pretraining and 20 novel classes

Our Contributions: Weakly Supervised Detection Transformer


- We propose Weakly Supervised Detection Transformer which scales to 1000s of novel classes with a single pretrain-finetune step
- Combines proposal generation of two-stage CNN
 model with scalability of one stage Transformer

WAIKOLOA HAWAII JAN 3-7 • 2023

- We introduce new large-scale experimental setups for WSOD and call for the community to move beyond toy datasets to complex settings
- We identify and rectify a weakness of a standard regularization method and explore sparsity for proposal noise reduction

model with scalability of one-stage Transformer

Large-Scale Novel Object Detection Results

- We utilize FSOD dataset [4] with 800 pretraining and 200 novel classes (175K boxes) constructed from ILSVRC and Open Images
 - Classes maximally separated wrt semantic hierarchy
 - 4X pretraining and 2X novel classes than previous

Method	mAP	AP50	mAR
Zhong <i>et al.</i> [8]	20.6	32.7	34.4
WS-DETR Base	13.9	20.0	60.1
WS-DETR Sparse	28.5	38.5	68.0
WS-DETR Joint	28.6	37.8	65.3
WS-DETR Full	28.6	38.2	67.4
Supervised DETR [2]	47.7	64.0	76.3

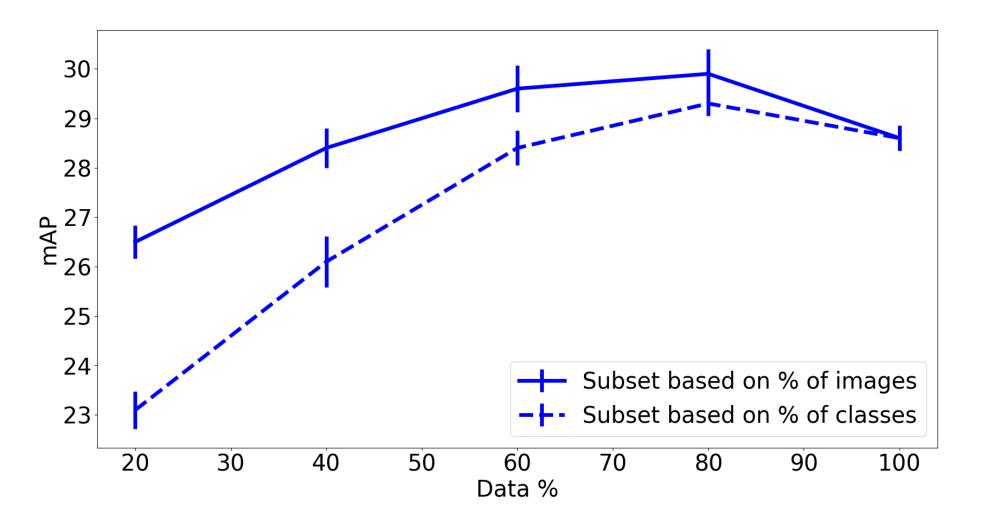
- We study iNaturalist dataset [7] for species detection (560K boxes)
 - 2,854 subclasses—5X that of Open Images
 - Less "pure" of novel classes than FSOD, but realistic

Method	13 Superclasses		2,854 Subclasses	
	mAP	AP50	mAP	AP50
Zhong <i>et al.</i> [8]	44.1	76.7	-	-
WS-DETR Base	0.2	0.4	1.7	3.7
WS-DETR Sparse	61.1	79.3	30.4	38.2
WS-DETR Joint	54.8	70.0	22.1	29.8
WS-DETR Full	60.7	78.7	35.4	43.5
Supervised DETR [2]	79.2	93.6	51.5	58.8

Joint Probability Estimation

- We show a standard regularization technique [8] overfits to classification features [5] and we introduce a solution
- Uses pretrained "objectness" for joint probability of object and class

Standard regularization [6]


Our joint probability estimation

Future Work

- Use noisy Web searches and language model generated image captions as labels
- Use Transformer attention to refine bounding box predictions with self-distillation [3]

Scaling Study

- Can't pretrain two DETRs? No problem! Using the class-agnostic DETR in classification stream only drops performance by 1.6 mAP
- First large-scale rigorous study of WSOD scaling: class quantity is more important than image quantity [4, 6]
 - Current benchmark datasets an order of magnitude too small
 - Takeaway: Dataset construction should prioritize class diversity

References

[1] Bilen and Vedaldi. Weakly Supervised Deep Detection Networks. CVPR, 2016.

Integrate self-supervised detection-aware

pretraining of Transformer [9]

[2] Carion *et al.* End-to-End Object Detection with Transformers. *ECCV*, 2020.

[3] Huang et al. Comprehensive Attention Self-Distillation for WSOD. NeurIPS, 2020.

[4] Fan et al. Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector. CVPR, 2020.

[5] Tang *et al.* Multiple Instance Detection Network with Online Instance Classifier Refinement. *CVPR*, 2017.
[6] Uijlings *et al.* Revisiting Knowledge Transfer for Training Object Class Detectors. *CVPR*, 2018.

[7] Van Horn et al. The iNaturalist Species Classification and Detection Dataset. CVPR, 2018.

[8] Zhong et al. Boosting WSOD with Progressive Knowledge Transfer. ECCV, 2020.

[9] Zhong et al. DAP: Detection-Aware Pre-training with Weak Supervision. CVPR, 2021.