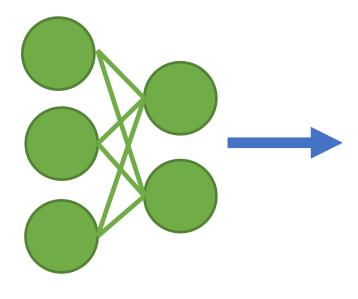


Towards Last-layer Retraining for Group Robustness with Fewer Annotations Tyler LaBonte¹, Vidya Muthukumar¹, Abhishek Kumar² ¹Georgia Tech ²Google DeepMind

Problem: Spurious correlations reduce generalization on minority groups

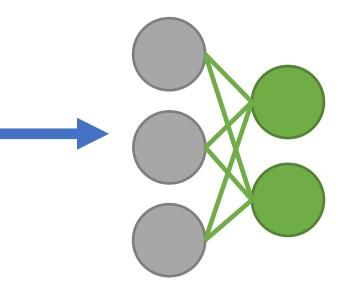
- Datasets often suffer from *spurious correlations* which are predictive but irrelevant for the classification task
- ERM neural networks overfit to spurious correlations and hence perform poorly on *minority groups* [1]
- Goal: Improve robustness by maximizing worst-group test *accuracy* rather than average performance


Landbird on land (73%) Landbird on water (4%)

Waterbird on water (22%)

Waterbird on land (1%)

Prior Work: Last-layer retraining on groupbalanced data upweights core features

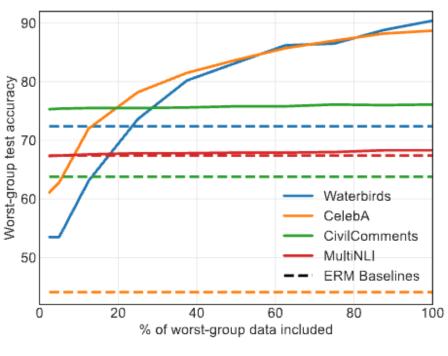

- ERM models learn *core features* of the data, but the spurious features are overweighted in the last layer
- If group annotations are available, *last-layer retraining* on a group balanced held-out set can boost WGA [DFR, 2]
- However, group annotations are often *sensitive to obtain,* unknown ahead of time, or expensive to annotate

Train full model

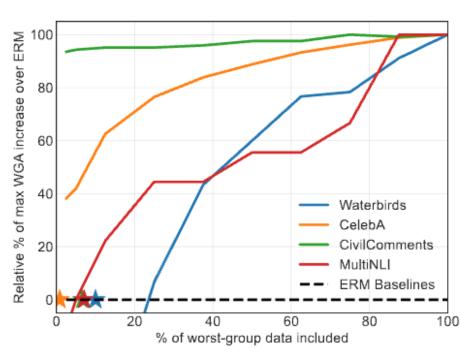
Annotate the spurious features on held-out set

Retrain last layer

Baseline: ERM worst-group accuracy depends on data composition and class balance

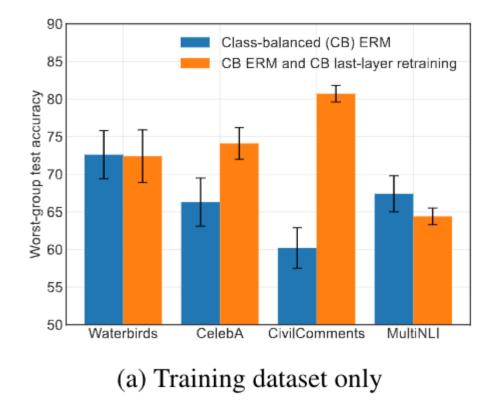

Method	Held-out dataset included	Worst-group test accuracy				
		Waterbirds	CelebA	CivilComments	MultiNLI	
CU ERM CB ERM	X X	$72.4_{\pm 1.0}$ $72.6_{\pm 3.2}$	$\begin{array}{c} 44.1_{\pm 0.9} \\ 66.3_{\pm 3.2} \end{array}$	$63.8_{\pm 6.2}$ $60.2_{\pm 2.7}$	$67.4_{\pm 2.4}$ $67.4_{\pm 2.4}$	
CU ERM CB ERM	✓ ✓	$81.6_{\pm 1.5}$ $81.9_{\pm 3.4}$	$\begin{array}{c} 44.5_{\pm 3.4} \\ 67.2_{\pm 5.6} \end{array}$	$59.1_{\pm 2.2} \\ 61.4_{\pm 0.7}$	$\begin{array}{c} 69.1_{\pm 1.3} \\ 69.2_{\pm 1.6} \end{array}$	

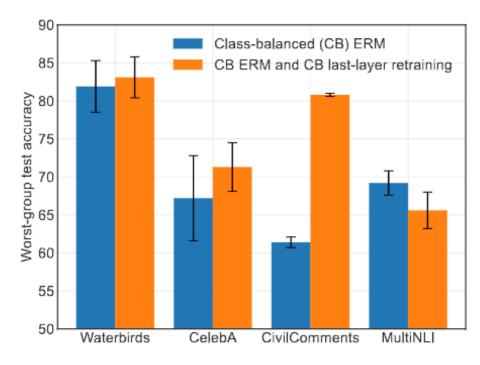
Our contributions


- Performance of last-layer retraining is largely due to *class-balancing*; perfect group balance is not necessary for improvement
- Retraining the last layer on a group-unbalanced held-out subset of the training distribution can greatly improve WGA over ERM
- Our SELF algorithm uses *model disagreements* to match DFR performance without using group annotations for training

Finding: Last-layer retraining is a free lunch for robustness, no group annotations needed

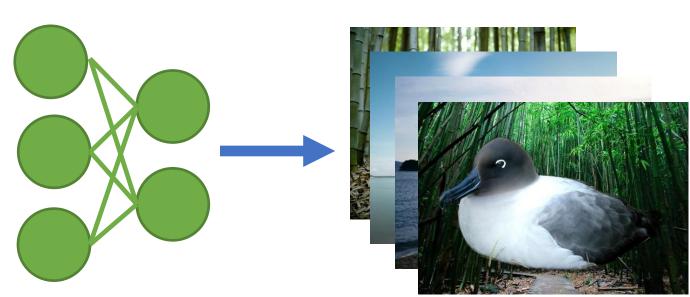
- Group-balancing implies *class-balancing*, so how much of the performance of last-layer retraining is due to class-balancing?
- Out of the performance solely due to group-balancing, how does it scale with more worst-group data? *Is group balance necessary?*




(a) Worst-group test accuracy

(b) Relative % of max WGA increase over ERM

- While group balancing is still important for best results, *class* balancing achieves an average of 94% of DFR performance
- On average, first ~33% of group balance achieves ~67% of robustness
- A free lunch in group robustness: *holding out 5% of the data* for class-balanced last-layer retraining improves WGA 17% over ERM



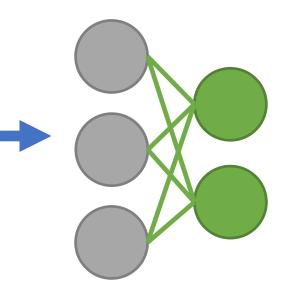
(b) Combined training and held-out datasets

- Works best if ERM is *saturated*, i.e., if ERM performance is not much improved with more data (like MultiNLI)
- Surprising and unexplained result given that the two splits have equally drastic group imbalance!

Met

Misc ES m Drop ES d

- [1] Geirhos et al. "Shortcut learning in deep neural networks". Nature Machine Intelligence, 2:665-673, 2020.
- [2] Kirichenko et al. "Last Layer Re-training is Sufficient for Robustness to Spurious Correlations". ICLR, 2023.



Proposal: Selective last-layer finetuning (SELF) uses disagreement to match DFR performance

group test accuracy
A CivilComments MultiNLI
$_{6}$ $61.4_{\pm0.7}$ $69.2_{\pm1.6}$
80.4 ± 0.8 64.7 ± 1.1
.9 79.1 $_{\pm 2.1}$ 70.7 $_{\pm 2.5}$
$\begin{array}{ccccccc} & & & & & & & & & & \\ 1 & & & & & & & &$
•

Balanced last-layer retraining is effective but still underperforms on highly group-imbalanced datasets like CelebA and MultiNLI

Can we use *latent model knowledge* to sample the held-out dataset? Yes! Finetune on *disagreements* of early-stop and convergent model

Train full model

Early-stop disagreements computed on held-out set

Finetune last layer

Analysis: Why does disagreement SELF greatly outperform misclassification on CivilComments?

ethod	Held-out annotations		Worst-group test accuracy				
	Group	Class	Waterbirds	CelebA	CivilComments	MultiNLI	
classification SELF	X	1	$92.6_{\pm 0.8}$	$83.0_{\pm 6.1}$	$62.7_{\pm 4.6}$	$72.2_{\pm 2.2}$	
misclassification SELF	X	1	$92.2_{\pm 0.7}$	$80.4_{\pm 3.9}$	$65.8_{\pm 7.6}$	$73.3_{\pm 1.2}$	
pout disagreement SELF	X	X	$92.3_{\pm 0.5}$	$85.7_{\pm 1.6}$	$69.9_{\pm 5.2}$	$68.7_{\pm 3.4}$	
disagreement SELF	X	X	$93.0_{\pm 0.3}$	$83.9_{\pm 0.9}$	$79.1_{\pm 2.1}$	$70.7_{\pm 2.5}$	

Contrary to assumptions of JTT [3] and early-stop misclassification, CivilComments

WGA decreases over training

Training accuracy low for misclassification:

misclassification captures difficulty, disagreement captures uncertainty

neutral/no identity neutral/identity toxic/no identity toxic/identity Epoch

References

- [3] Liu et al. "Just Train Twice: Improving Group Robustness Without Training Group Information". ICML, 2021.
- Paper Link