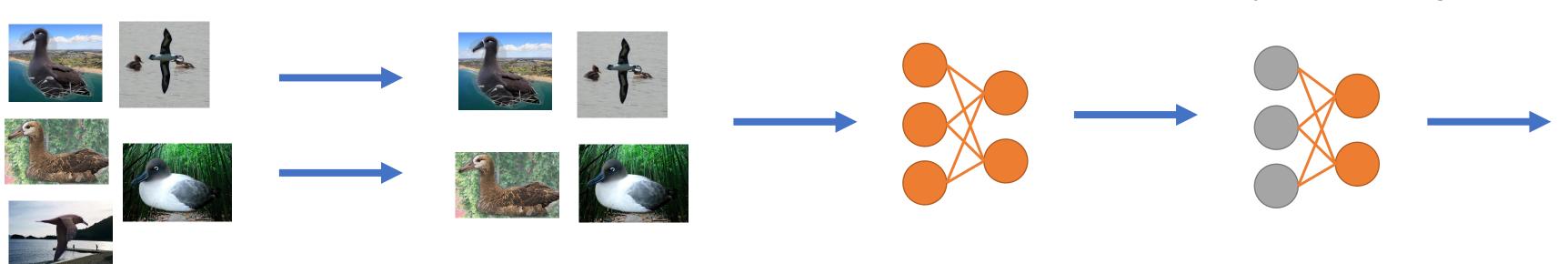
Saving a Split for Last-Layer Retraining can Improve **Group Robustness without Group Annotations**

Tyler LaBonte¹, Vidya Muthukumar¹, Abhishek Kumar² ¹Georgia Tech, ²Google DeepMind



Abstract: Worst-group accuracy can be improved with no group annotations by holding out a split of the training dataset for class-balanced last-layer retraining.

Split training dataset into class-balanced sets

ERM on larger split

Last-layer retraining on smaller split

Problem: Empirical risk minimization gives poor minority group performance

- Datasets often suffer from spurious correlations which are irrelevant for the true label
- Spurious features create minority groups which are underrepresented during training
- Maximize worst-group test accuracy (WGA) instead of mean over the training distribution (ERM)

Landbird on land (73%)

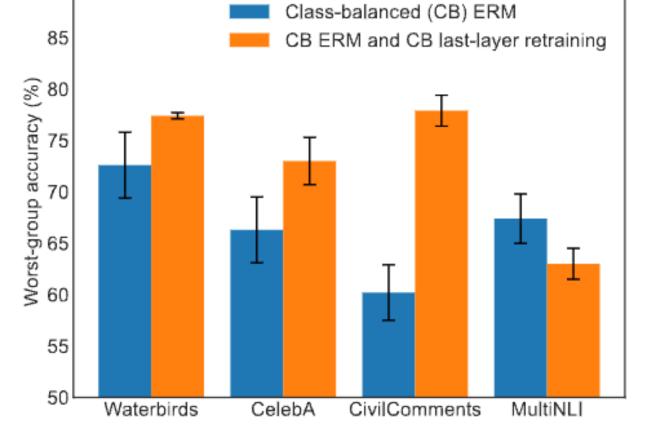
Landbird on water (4%)

Waterbird on water (22%)

Waterbird on land (1%)

Prior Work: With group annotations, last-layer retraining greatly improves WGA

- Models learn core features, but spurious features are overweighted in last layer [1]
- Last-layer retraining (DFR) on held-out group-balanced dataset is efficient and effective
- However, groups are often unknown ahead of time or are difficult to annotate


Class-balanced last-layer retraining on DFR held-out set, averaged over 3 random seeds.

Method	Group Annotations	Worst-Group Test Accuracy			
		Waterbirds	CelebA	CivilComments	MultiNLI
CB ERM	X	81.9	67.2	61.4	69.2
JTT [2]	X	85.6	75.6	67.8	67.5
RWY-ES [3]	X	74.5	76.8	78.9	68.0
CB retraining (ours)	X	92.6	73.7	80.4	64.7
DFR [1]	✓	92.4	87.0	81.8	70.8

Our Work: Class-balanced retraining on held-out data boosts WGA without group anns

- Significant DFR gain is due solely to class-balancing; achieves 94% of DFR acc on average
- Class-balanced last-layer retraining renders class-balancing in the ERM stage optional [3]
- Improves WGA despite similarly imbalanced groups in held-out set: surprising and unexplained
- Worse on MultiNLI dataset because ERM is not saturated (collect more data instead)

Last-layer retraining is a "free lunch" in group robustness on 3 of 4 benchmark datasets

(a) Training dataset only

Worst-group 8 55 CelebA CivilComments

(b) Combined training and held-out datasets

References

[1] Kirichenko et al. "Last layer retraining is sufficient for robustness to spurious correlations." NeurIPS 2022. [2] Liu et al. "Just train twice: Improving group robustness without training group information." ICML 2021. [3] Idrissi et al. "Simple data balancing achieves competitive worst-group-accuracy." CLeaR 2022.